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Abstract. Successful large scale object instance retrieval systems are
typically based on accurate matching of local descriptors, such as SIFT.
However, these local descriptors are often not sufficiently distinctive to
prevent false correspondences, as they only consider the gradient appear-
ance of the local patch, without being able to “see the big picture”.

We describe a method, SemanticSIFT, which takes account of local im-
age semantic content (such as grass and sky) in matching, and thereby
eliminates many false matches. We show that this enhanced descriptor
can be employed in standard large scale inverted file systems with the
following benefits: improved precision (as false retrievals are suppressed);
an almost two-fold speedup in retrieval speed (as posting lists are shorter
on average); and, depending on the target application, a 20% decrease
in memory requirements (since unrequired ‘semantic’ words can be re-
moved). Furthermore, we also introduce a fast, and near state of the art,
semantic segmentation algorithm.

Quantitative and qualitative results on standard benchmark datasets
(Oxford Buildings 5k and 105k) demonstrate the effectiveness of our
approach.

1 Introduction

Large scale specific object retrieval is a well studied topic due to its usefulness in a
range of applications, amongst others: geolocalization [1, 2, 3, 4], personal photo
search and automatic tagging [5, 6], product and logo recognition [7, 8, 9, 10],
video search [11] and 3-D reconstruction [12].

All successful systems rely on matching local image patches using their ap-
pearance, usually via matching of local descriptors such as SIFT [13]. The bag-of-
visual-words (BoW) framework [11] accomplishes this by quantizing descriptors
into visual words and performing efficient retrieval for large scale datasets by
using an inverted index. Many improvements to this seminal work have been
made by increasing the quality of descriptor matches. These include: higher
precision by using large visual vocabularies [7, 14]; storing compact versions of
descriptors inside the inverted index [15, 16, 17]; spatial reranking and query ex-
pansion [18, 19, 20, 21, 22]; and learning better descriptors (than SIFT) [23, 24].

However, all these methods are built around the core system based on match-
ing local patches/descriptors. In this paper we aim at improving the core system
and going beyond blind matching of local patches by also taking account of the
semantic content of the query and database images. This addresses one of the
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Fig. 1. Patch matching with semantic reasoning. (a) Four normalized image
patches extracted from the images in (c); (b) zoom-in around the patches (with stan-
dard size and rotation normalization). The four patches are very similar, their descrip-
tors match and it is therefore impossible to filter these false matches using the patches
alone. (d) Automatic segmentation of the image into {sky, grass/trees, other} shown
as blue, green and red, respectively. The local patches’ semantic content provides suffi-
cient information to discard most of these false matches. The four patches (from top to
bottom) contain {grass, other}, {sky, other}, {other}, {sky, other}, and consequently
only the {sky, other} patches can match in this case. (e,f) Matched patches without
and with semantic reasoning, respectively. The number of matches falls from 25 to
12 due to correctly removing correspondences which were falsely established based on
patches alone. Note that no spatial consistency check is performed

principal problems of local descriptor matching: that often the patches are not
sufficiently discriminative to avoid false matches – see figure 1. The key idea in
this work is to use semantic information to filter out such false matches. We
term the augmented SIFT descriptor, ‘SemanticSIFT’.

The proposed approach can be seen as belonging to an emerging theme in
recent computer vision papers of using semantic information to aid classical
computer vision tasks, e.g. in stereo correspondence [25], 3D reconstruction [26]
and Semantic SLAM [27, 28]. For example, Haene et al. [26] show that 3D
reconstruction can be improved by simultaneously reasoning about the classes
of objects present in the image, since the objects provide geometric cues about
surface normals.
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Despite the obvious benefits of using semantic information in various areas of
computer vision, semantic segmentation has not yet been applied to large scale
object retrieval. Rather, erroneous SIFT matches have been removed using the
context of other descriptors and spatial matching [1, 3, 29, 30, 31]. These meth-
ods, and the others listed above, are complementary to SemanticSIFT. Note,
SemanticSIFT should be distinguished from “semantic retrieval” [32, 33, 34] in
CBIR where the goal is to retrieve visual concepts. Here our focus is on specific
object retrieval, so queries are “find images containing this particular building”
rather than “find images of cars in urban environments”. However, as will be
seen, in specific object search knowing that a set of pixels represents a build-
ing or not is certainly beneficial as false matches to non-building pixels can be
discarded.

In the following, we describe the SemanticSIFT descriptor and its benefits
(section 2). It will be seen that it can reduce the size of posting lists, which leads
to a speed up in retrieval times, with no loss in retrieval performance. It also
removes many erroneous retrievals, and thereby improves retrieval performance.
We also describe a method for fast semantic segmentation that is suitable for
large scale and real time systems (section 3).

2 Semantic vocabulary for object retrieval

In this section we develop the SemanticSIFT representation, starting with a
semantic vocabulary based on a semantic segmentation of the image into multiple
classes. We then describe how this semantic vocabulary is used to match local
patches, and its combination with a standard BoW visual vocabulary, to form
the hybrid SemanticSIFT vocabulary.

2.1 Semantic vocabulary

Suppose we have a semantic segmentation method that provides a pixel-wise
labelling into C semantic classes. High accuracy segmentations are desired and
therefore for this work we only focus on the following relatively “easy” classes:
sky, flora (i.e. grass, trees and bushes), and “other” (containing everything else,
including building, road, human, car, table, sea, etc.); therefore C = 3. However,
the choice of classes is free and the retrieval method is capable of handling any
choice given that the semantic segmentation quality is high.

A local image patch is assigned a “semantic word” based on the semantic
class/classes it contains: if the patch contains at least one pixel of a partic-
ular semantic class c, then it is deemed to contain class c. There are Ks =
2C − 1 possible semantic words representing all possible combinations of a class
appearing or not appearing in the patch (note the “−1” is because a patch
has to contain at least one semantic class). For our choice of semantic classes
({sky,flora,other}, C = 3), there are Ks = 7 semantic words formed from all
possible non-empty sub-sets: {sky}, {flora}, {other}, {sky,flora}, {sky,other},
{flora,other} and {sky,flora,other}.
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2.2 Matching patches: SemanticSIFT

As with the standard bag-of-visual-words retrieval methods, two local patches
are deemed to match each other if they are assigned to the same word. For visual
words this typically means that the relevant local descriptors have been assigned
to the same cluster obtained by (approximate) k-means. For the semantic word
case, words are naturally defined as the combination of classes appearing in the
local patch, and no clustering is required. Figure 1 demonstrates the effectiveness
of this approach, where several local patches are assigned to the same visual
word as they have almost identical appearance and therefore very similar SIFT
descriptors (in fact their Hamming signatures also match – see section 4.1).
However, looking at the corresponding images it is clear that the matches are
invalid due to the difference in their semantic content. Most of the false matches
obtained by using visual words can be eliminated by requiring that the semantic
words have to match as well. The procedure therefore increases precision, as will
be demonstrated in section 4.2.

2.3 Product vocabulary and speedup

In order to deem two patches to be matching, both their visual words and seman-
tic words have to be the same. This behaviour is identical to defining a hybrid,
SemanticSIFT, vocabulary and demanding that the hybrid words match. The
SemanticSIFT vocabulary is effectively a product vocabulary of the visual and
the semantic one – its size is K = Kv ×Ks, where Kv and Ks are the sizes of
the visual and semantic vocabularies, respectively. In other words, the Semantic-
SIFT vocabulary has all combinations of visual and semantic words. If the visual
words are v1, v2, .., vKv and semantic words are s1, s2, ..., sKs , then Semantic-
SIFT words are (v1, s1), (v1, s2), ..., (v1, sKs), (v2, s1), (v2, s2), ..., (v2, sKs), ...,
(vKv , sKs).

Standard large scale retrieval systems based around the bag-of-words concept
use very large visual vocabularies, ranging between 100k to 16M words, making
the bag-of-word image representation very sparse. Fast ranking is performed us-
ing an inverted index which exploits the BoW sparsity, where images containing
a particular visual word are arranged in a posting list. Larger vocabularies cause
BoWs to be sparser, which makes average posting list length smaller, and there-
fore improves the retrieval speed as a smaller number of entries in the inverted
index are visited during the scoring. Since the SemanticSIFT vocabulary size is
Kv ×Ks, i.e. Ks times larger than the baseline vocabulary (where our Ks = 7),
the average posting list length decreases Ks times making retrieval significantly
faster. However, ranking is not actually Ks faster as some semantic words are
much rarer than others (e.g. patches which contain all three semantic classes are
rarer than patches which contain only “other”). Nevertheless, we experimentally
obtain an almost two-fold speedup (see section 4.2).

2.4 Reduction in memory requirements

As discussed earlier, SemanticSIFT increases precision by removing some false
matches, while simultaneously improving retrieval speed by visiting shorter post-



Visual vocabulary with a semantic twist 5

ing lists. Both of these improvements come at no storage cost at all as the number
of entries in the inverted index doesn’t change (the average posting list length de-
creases as the vocabulary size increases, but the total number of entries remains
the same). It is possible to reduce storage requirements, and therefore reduce the
RAM consumption of the retrieval system if it is known a priori that a particular
class of objects is not interesting to the user. For example, it is reasonable to
assume that pure sky features are of no use in most retrieval applications as it is
unlikely that a user will search for a particular detail in the sky or a particular
cloud. It is also likely that features which only contain flora are also not useful or
even detrimental as they are often not distinctive enough. Note that we are not
proposing to remove all features that contain flora, just the ones that contain
only flora or only {flora,sky}, because {flora,other} can indeed be distinctive. For
example, a feature from an interface between a building and grass is potentially
useful. Note that, apart from reducing storage requirements, removal of features
also decreases computational cost as there is a further reduction in the number
of visited items in the inverted index.

2.5 Accounting for segmentation uncertainty

In an ideal case when perfect semantic segmentation of all images is available,
SemanticSIFT is guaranteed to improve precision. However, in a real-world sce-
nario the “hard” nature of the matching procedure, i.e. requiring that semantic
words have to be identical, could potentially hurt recall. This is particularly evi-
dent near the borders between two different semantic classes, where uncertainty
in the exact position of the border can lead to noisy semantic word assignments,
resulting in false rejection of matching patches.

Here we describe a simple extension to SemanticSIFT, called SoftSemantic-
SIFT, which can take these uncertainties into account. It only assumes that the
the underlying semantic segmentation method can output an extra special la-
bel, unknown, without placing any constraints on the way this information is
obtained. For example, one could use the method in section 3 which compares
costs across classes, or have an ad hoc post-processing step which simply marks
pixels close to estimated semantic discontinuities as “unknown”.

SemanticSIFT matching, as before, enforces that the underlying patch se-
mantic content has to be identical, but the special “unknown” label is allowed
to match any other label(s). For example, {sky,other} are allowed to match
{unknown} because the “unknown” pixels could potentially contain “sky” and
“other”. Note that a patch which contains “unknown” cannot simply match
any other patch, as for example {flora,unknown} cannot match {other} as “un-
known” can match “other” but the latter patch does not contain “flora”.

Impact on speed and memory requirements. The SoftSemanticSIFT is
slower than SemanticSIFT because of its smaller rejection rate of visual word
matched features, but is also faster than the BoW matching as many patches will
remain rejected. The number of semantic words increases to Ks = 1+2×7 = 15,
because an extra {unknown} word is added, and all of the original 7 semantic



6 Relja Arandjelović and Andrew Zisserman

words can appear in two variants (with or without “unknown”). However, un-
like SemanticSIFT, multiple posting lists are visited for a single query feature;
for example, for a query {flora} posting lists for {flora}, {flora,unknown} and
{unknown} need to be visited (obviously, the search is restricted to the same
visual word, as before). Likewise, storage savings with respect to the baseline
visual retrieval system are smaller than SemanticSIFT, but still exist.

2.6 Challenges

Some images are very challenging for automatic semantic segmentation, even for
the seemingly simple task of finding sky, flora and other. Therefore, it is expected
that failures occur. However, not all miss-classifications are catastrophic for the
task considered in this paper. As illustrated in figure 2, provided that mistakes
are consistent matches will not be lost.

(a) A camouflaged lizard (b) A blue roof building

Fig. 2. Hard cases for semantic segmentation. Two pairs of challenging images
are shown in the top row, and the corresponding semantic segmentation is shown in
the bottom row. The left pair shows a green lizard which due to camouflage looks
like grass, the right pair shows an Oxford college with a sky-colour roof. Even though
semantic segmentation fails in these two challenging cases, the retrieval system is not
hampered because the miss-segmentation is systematic and repeatable, e.g. the green
lizard is always classified as grass and therefore correctly matched features will not be
removed

3 Fast semantic segmentation

For the proposed SemanticSIFT method we have two principal requirements for
the semantic segmentation: first, speed, as we envisage large scale deployment
(millions to billions of images) and real time processing of uploaded query images;
and second, accuracy, as incorrect segmentations may reduce recall. Of course,
these two requirements often conflict: currently the methods of [35, 36, 37] pro-
duce state of the art semantic segmentations (e.g. on the Stanford background
dataset [38]) but take several minutes per image; conversely, existing fast ap-
proaches either produce results of insufficient quality, such as Semantic Texton
Forest [39] (see supplementary material for examples), or make assumptions
which are often violated in real world images, such as the “Tiered Scene” as-
sumption [40] where sky is, if present in the image, forced to be above any other
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label (this assumption is often invalid in real images, see bottom row of figure 1
or supplementary material).

For this reason we introduce our own semantic segmentation method, dubbed
Fast Semantic Segmentation via Soft Segments (FSSS), which is described next.
It proceeds in two stages: first, a number of soft segments are defined across the
image centred on a regular grid; second, these soft segments are used to provide
context when labelling pixels with their semantic class. Note, however, that any
available fast and accurate semantic segmentation method could be employed
for SemanticSIFT.

3.1 Soft segments

Segmentation methods often employ super-pixels or multiple-segmentations [35,
36, 41] to provide context for pixel labelling and/or to reduce complexity. Here,
rather than making a hard decision on such segments, we obtain soft-segments
(or soft super-pixels) using the embedding method of [42] together with spatial
proximity. The method [42] provides an 8 dimensional embedding for every pixel
in an image, such that a small L2 distance between a pair of pixels in this feature
space signifies that the two pixels are likely to be a part of the same superpixel.
The squared L2 distance between pixels i and j is denoted as Ds(i, j). The
method is very fast, producing an embedding for a 500×500 image in 1.7 seconds
on a CPU.

A soft-segment takes account of both the similarity in pixel appearances
(from Ds(i, j)) and also their spatial distance (e.g. a blue car shouldn’t be in the
same soft-segment as blue sky because they are not close in the image space).
Suppose a soft-segment is centred on pixel i (pixel i is the seed), then we define
the association of pixel j to this soft-segment by the weight

wi,j = exp(−αDs(i, j)− βDp(i, j)) (1)

where Dp(i, j) is the squared L2 distance between normalized pixel locations,
and α and β are parameters (to be learnt). Figure 3b shows several examples
of soft-segments. A set of soft-segments is obtained for an image by seeding
segments on a regular grid (i.e. the i pixels above are chosen on a regular grid).

3.2 Labelling

A labelling of the pixels of the image (into the semantic classes) and of the set
of soft-segments (into the same semantic classes) is obtained by minimizing an
energy function. As usual, there are two terms, but in this case the unary is
over soft-segments and is low when the label is consistent with the appearance;
and the second term is between soft-segments and pixels, and is low when the
labelling of the soft-segment is consistent with the labelling of pixels (softly)
associated with it. More formally, the energy E(l, L) of a labelling l is defined
as follows.

E (l, L) =
∑
i

λϕi (Li)−
∑
j

wi,jδ (Li = lj)

 (2)
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(a) Model

(b) Soft segments

Fig. 3. Graphical model and soft-segments. (a) The graphical model correspond-
ing to the energy (2). Pixels (rectangular grid) are connected to multiple soft-segments
(shown as circles), where (b) illustrates the support of the soft-segments. (b) Top left:
the original image, all other images show soft-segments as defined in equation (1). Each
image shows the “seed” for the soft-segment as a red cross, and the brightness depicts
the weight wi,j between the seed pixel i and all pixels j. Note, (i) that the soft-segments
are localized and do not cross semantic boundaries, and (ii) the varying effective sizes,
e.g. soft-segments containing sky and buildings are large while the one centred on a
person is small

where lj is the label of pixel j, Li is a latent variable signifying the label of the
soft superpixel defined at the grid point i, ϕi(Li) is the penalty for superpixel
i having the label Li (i.e. the “unary potential”), wi,j is the reward obtained
when soft-segment i and pixel j have the same label, δ(Li = lj) is an indicator
function which yields 1 if Li equals lj and 0 otherwise, and λ is the relative
weighting of the unary and pairwise terms. The graphical model corresponding
to this energy is shown in figure 3a. The unary term is described in more detail
below.

Efficient inference. From equation (2) and the corresponding graphical model
in figure 3a, it is clear that, by design, the pixel labels l are conditionally inde-
pendent from each other given the soft segment labels L, and vice versa. The
energy function is optimized by initializing the segment labels L according to the
unary potentials, followed by iterating between fixing L and optimizing for pixel
labels l, and fixing l and optimizing for L. The procedure can be interpreted
as message passing, where the first set of messages are sent top-down from soft
superpixels to the underlying pixels, and the second set of messages are sent
bottom-up from pixels to soft superpixels.

The iterations finish when a step does not change any label; in practice the
algorithm converges quickly, in 1 to 7 iterations depending on the complexity of
the scene. Several examples of the produced semantic segmentations are shown
in figure 4 and more are available in the supplementary material.
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Segmentation uncertainty. It is sometimes beneficial for a semantic seg-
mentation algorithm to be able to provide an extra “unknown” label when it
is uncertain about the true labelling, instead of making a hard and potentially
wrong decision; such functionality is exploited by the SoftSemanticSIFT method
(section 2.5). A pixel is assigned the “unknown” label if perturbing its optimal
label does not change its contribution to the energy (equation (2)) more than a
threshold value. The uncertainty estimation does not impact computational ef-
ficiency as it is obtained directly during the optimization of the energy function;
the supplementary material contains more details.

Implementation details. The features used are a histogram of colours in HSV
space, a bag-of-words of dense RootSIFT [18], and a histogram of normalized y
pixel locations. These are concatenated into a single feature vector. Each pixel
generates one very sparse feature vector (e.g. the histogram of colours component
has exactly one non-zero element). The feature vector for a soft-segment Li is
a weighted sum of pixel-wise feature vectors, where the weight for pixel j is
wi,j , as defined above in (1). We train a multi-class one-vs-all linear SVM on
top of soft-segment features, using a Hellinger kernel implemented as an explicit
feature map [43]. The soft-segment unary potentials ϕi(Li) are then computed
directly as negative classifier scores. All implementation details are provided in
the supplementary material, i.e. number of soft-segments per image, grid spacing,
values of α and β parameters, etc.

The run time is 7 seconds, with a pure MATLAB CPU implementation, on
a 500× 500 pixel image, including all required preprocessing (i.e. superpixeliza-
tion, feature extraction, computation of unary and pairwise potentials, etc). Full
source code, including inference, training and pre-trained models, is available
at [44].

3.3 Segmentation results

Our FSSS method is evaluated on the standard Stanford background dataset [38]
which contains 715 320×240 images and 8 semantic categories. This is the most
suitable standard benchmark for our task, as others, such as PASCAL VOC,
concentrate on objects rather than ‘stuff’. As is standard procedure [36, 37, 38],
segmentation quality is assessed as the average pixel accuracy across five random
splits of the data. Our method achieves competitive performance, 78.0%, while
only taking 3.7 seconds end-to-end (i.e. including all feature extraction, soft-
segment computation and pixel labelling). The results compare favourably to
existing methods which generally use far more complicated features and take
longer to compute. For example [38] achieves 76.5% (and uses additional features
including the horizon location information and segment shape), and reports that
inference takes up to 10 minutes; Tighe and Lazebnik [45] achieve 77.5% with a
large collection of features: superpixel shape, GIST, location, texton histograms,
SIFT histogram, SIFT histogram on superpixel boundary, colour, context, etc.
The best reported accuracy is 81.9% [36], but this method takes minutes per
image as it relies on gPb contour detector [46] and superpixelization [47].
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Fig. 4. Example semantic segmentations. Pairs of rows show the original image
on the top, and the automatic semantic segmentation on the bottom. The three classes
{sky, flora, other} are shown in blue, green and red, respectively. Best viewed in colour.
See the supplementary material for more examples

We have demonstrated that FSSS is ‘fit for purpose’: it has been designed for
fast and accurate semantic segmentation, and achieves this whilst being com-
parable to the state of the art in terms of multi-class semantic segmentation
performance.

4 Experimental setup and retrieval results

4.1 Evaluation, datasets and baseline

Retrieval performance is assessed using the standard and publicly available Ox-
ford Buildings benchmark [14]. The basic dataset, Oxford 5k, contains 5062
high-resolution images downloaded from Flickr. Retrieval quality is measured
in terms of mean average precision (mAP) over the 55 pre-defined test queries.
In order to test larger scale retrieval, the dataset is often expanded with 100k
Flickr images acting as distractors, thus forming the Oxford 105k dataset. We
follow the common practice [15, 20, 48, 49] of using an independent dataset,
Paris 6k [48], for all training (e.g. computation of the visual vocabulary, training
for semantic segmentation, etc).

Baseline. We have implemented a baseline retrieval system based on the Ham-
ming Embedding [15] with burstiness normalization [50]. In detail, we extract
RootSIFT [18] descriptors from Hessian-Affine interest points [51], and quantize
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them into 100k visual words. A 64-bit Hamming Embedding [15] signature is
stored together with each feature in order to improve feature matching preci-
sion. Two features are deemed to match if they are assigned to the same visual
word and their Hamming signatures are within a standard threshold of 24 on the
Hamming distance [15, 52]. For a given query, a similarity score for a database
image is obtained by summing all the Gaussian weighted votes of the image’s
matching features (a standard parameter value of σ = 16 is used, as in [50, 52]).
Finally, burstiness normalization of [50] is applied as well. The visual vocabulary
and Hamming Embedding parameters are all trained on the independent Paris
6k dataset.

The baseline achieves good performance (mAP) on Oxford 5k and Oxford
105k benchmarks (table 1): 70.70% and 61.63%, respectively. Adding spatial
reranking [14] improves mAPs to 71.95% and 64.38%.

Semantic Segmentation. We have found that the Stanford background dataset
[38], commonly used for semantic segmentation benchmarks, is inappropriate for
training a segmentation method working on real-world unconstrained Flickr im-
ages. It contains 715 relatively small (320× 240) images, with, for example, less
than 8 million sky pixels. Furthermore, the set only contains outdoor images shot
in daytime. Other datasets, e.g. MSRC [53], suffer from similar drawbacks. We
have therefore annotated [54] 360 high resolution images (1024×768), randomly
sampled from the Paris 6k [48] and Sculptures 6k [55] datasets, both of which
have no images in common with Oxford 5k and 105k datasets. The set (named
ParisSculpt360) contains many more labelled pixels: 122, 30 and 43 million for
sky, flora and other, respectively, compared to the Stanford background dataset
which contains only 55M pixels in total. The images are unconstrained, i.e. there
are indoors and outdoors photos, taken at day or night, colour and grayscale,
and are not necessarily vertically aligned. The 5-fold average accuracy of FSSS
on this dataset is 91.6%.

All SemanticSIFT results and qualitative examples are generated using mod-
els trained on this ParisSculpt360 training data.

4.2 Retrieval results

In this section we evaluate the three benefits of using SemanticSIFT versus
the baseline, namely: improved retrieval quality, speedup and reduced stor-
age/memory requirements.

Retrieval quality. Table 1 shows the retrieval performance of the baseline, Se-
manticSIFT and SoftSemanticSIFT. The baseline achieves the mAP of 70.70%
and 61.63% on the Oxford 5k and 105k benchmarks, respectively. Our Se-
manticSIFT method improves precision increasing the mAP to 70.82% and
62.28%. However, it struggles to bring an improvement after spatial reranking,
because segmentation errors reduce recall. SoftSemanticSIFT, which is robust to
some uncertainties in the automatic semantic segmentation, gives better results,
71.17% and 62.34%, and does outperform both the baseline and SemanticSIFT
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Table 1. Retrieval performance (mAP). All methods use exactly the same fea-
tures, 100k visual vocabulary and Hamming signatures with all training performed on
the Paris6k dataset (section 4.1). “+Spat.” denotes spatial reranking [14]. SoftSeman-
ticSIFT clearly outperforms the baseline and SemanticSIFT methods

Method
Oxford 5k Oxford 105k

+spat. +spat.

Baseline 0.7070 0.7195 0.6163 0.6438
SemanticSIFT 0.7082 0.7196 0.6228 0.6434
SoftSemanticSIFT 0.7117 0.7238 0.6234 0.6487

Fig. 5. Filtered false matches. Six pairs of images showing patch correspondences
based on baseline descriptor-only based matching (i.e. matching visual word and Ham-
ming signatures). Patches are shown as red ellipses, matching patches are connected
with green lines. All displayed matches are correctly filtered out using SemanticSIFT
because of the semantic content mismatch. Note, for example, the very challenging
pair in the bottom-right, where patches corresponding to spires match patches show-
ing shadows of spires; SemanticSIFT correctly discards these as the former contain
{sky,other} while the latter only contain {other}

after spatial reranking as well. We further evaluate the statistical significance of
the obtained improvements by employing five different visual vocabularies (cor-
responding to different random initializations of the approximate k-means algo-
rithm). In all five cases SoftSemanticSIFT outperforms the baseline, for Ox105k
the relative improvement is +1.2% on average, the minimal being +1%.

Thus, even a small number of semantic classes leads to an improvement
in retrieval mAP performance. It is to be expected that as more classes are
introduced this improvement will increase. Figure 5 shows a selection of examples
where the use of SemanticSIFT removes false matches (arising from the visual
words and Hamming signatures alone).
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Table 2. Speedup and reduction in memory requirements. “Speedup” shows
the reduction in the number of posting list entries traversed for the 55 pre-defined
queries in the Oxford Buildings benchmark, achieved due to using a semantic vocabu-
lary. Relative reduction in memory requirements (index size) is achieved by removing
{flora} and {sky,flora} features, while “total speedup” denotes the speedup achieved
after the index reduction

Method
Oxford 5k Oxford 105k

speedup memory total speedup memory total
savings speedup savings speedup

SemanticSIFT 31.6% 13.2% 31.9% 41.1% 19.6% 41.5%
SoftSemanticSIFT 23.1% 9.4% 23.3% 30.7% 14.5% 31.0%

Speedup. As discussed in section 2.3, SemanticSIFT provides a significant
speedup due to the reduction in the average posting list length compared to
the baseline. The retrieval speed directly depends on the number of posting list
entries that are traversed during the ranking stage, which is also equal to the
number of Hamming distance computations. Therefore, the appropriate and ac-
curate measure of speedup is the reduction in the average number of traversed
posting list entries when using SemanticSIFT compared to the baseline. The
speedup (table 2), is 31.6% and 41.1% for the Oxford 5k and Oxford 105k tests,
respectively. For the SoftSemanticSIFT case, where more posting list entries are
traversed due to handling uncertainty of semantic segmentation, the speedup is
smaller but still large: 23.1% and 30.7% for the two tests, respectively.

The above speedup measurements are based on the predefined 55 queries
in the Oxford Buildings benchmarks. Another way of assessing retrieval speed
across inverted indexes with varying properties is to compare the expected num-
ber of inverted index entries the system has to process for an average query [56].
In the supplementary material we give the details of the computation for the
case of SemanticSIFT. The result is that the expected speedup over the baseline
for an average query is 40.7% and 50.4%, for the Oxford 5k and Oxford 105k
tests, respectively.

One alternate way of improving retrieval speed is to increase the visual vo-
cabulary (as this also reduces the length of posting lists on average). However,
this leads to increased quantization errors and the retrieval performance suf-
fers: with a 700k visual vocabulary, equal to the size of SemanticSIFT’s product
vocabulary, the baseline only achieves mAP of 54.9% on Oxford 5k, compared
to 70.7% obtained with a 100k vocabulary. In contrast, SoftSemanticSIFT gets
71.2% while preserving the same speedup.

Memory savings. As discussed in section 2.4, features can be removed from
the inverted index based on their semantic content if it is known a priori that
they are not useful for the application in question. When searching for build-
ings (which belong to the “other” class), as in the Oxford Buildings tests, it
is clear that flora features are not useful. Therefore, the database features as-
signed to semantic words {flora} or {flora,sky} are removed, whilst the seman-
tic word {flora,other} is kept as it can still be useful. With these changes the
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retrieval quality (mAP) remains virtually unchanged for both Oxford 5k and
Oxford 105k tests. The memory/storage saving on the other hand is significant
(table 2): 13.2% and 19.6% of features are removed from the SemanticSIFT in-
dex for Oxford 5k and 105k, respectively. Furthermore, there is an additional
slight improvement in speed due to the decreased number of posting lists that
have to be traversed for query images which contain the removed features. The
total speedup for the two datasets with respect to the baseline is 31.9% and
41.5%, compared to the 31.6% and 41.1% achieved without feature removal.
The speedup is minor because the 55 predefined queries for the Oxford Build-
ings benchmarks don’t contain many flora features.

Colour. One might argue that the SemanticSIFT’s increase in retrieval perfor-
mance is purely due to the use of colour (used indirectly for semantic segmenta-
tion), which the baseline method does not use. However, OpponentSIFT [57], the
state-of-the-art colour SIFT variant, actually performs slightly worse than SIFT
(the mAP decreases by 0.7%) on Oxford 5k. This proves that the improvement
from SemanticSIFT is not due to the use of colour, but to taking proper account
of the semantic classes when matching.

5 Conclusions and future work

We have presented a method, SemanticSIFT, which improves the standard large
scale specific object retrieval by leveraging semantic information to efficiently
filter out some falsely matched descriptors, thereby increasing precision and im-
proving retrieval performance. Furthermore, there is a “win-win-win” situation:
the gain in recognition accuracy is obtained simultaneously with a nearly two-
fold speedup, due to visiting shorter posting lists, and a 20% decrease in storage
(RAM) requirements. The method can be used as an improvement to any stan-
dard retrieval systems based on matching local patches – a ‘plug in’ to boost
speed and retrieval performance.

Semantic reasoning for object retrieval is a very promising idea that opens
many directions for future work, which are out of scope and length limitations of
this paper. With future improvements of semantic segmentation methods (which
will surely happen over time), one can hope to take more classes into considera-
tion, e.g. people/faces (successful face detection already exists), buildings, cars,
roads, flowers, etc. A finer scale reasoning can be used too – for the “buildings”
class example one could remove falsely matched features between a window and
a door. Successful fine-grained distinctions within a class would be very useful
as well.

Another interesting direction is to employ the semantic labels as a form of
automatic supervision which could be used in descriptor learning. Automatic
generation of training data for descriptor learning in the form of matching and
non-matching image patches using object retrieval has been done in [58, 59], but
unsupervised discovery of hard negatives has always been a problem. Semantic-
SIFT can provide the needed automatic supervision.
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